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History
Nonlinear time series analysis

• Traces back to Henri Poincaré’s three-body problem in the
late 1800s.

◦ Refers to the challenge of accurately predicting the future

positions and motions of three celestial bodies.

◦ Poincaré laid the foundations of chaos theory.

• In the 1960s, Edward Lorenz formulated a system of
equations.

◦ Highlighted the sensitivity to initial conditions, a hallmark of

chaotic systems.

◦ Guided researchers towards nonlinear dynamics.
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Terminology

• Time series

◦ Think of pictures in a video– the video is a time series of

pictures.

• Trajectory: the path created when we plot data points;

shows us how a system changes.

• Deterministic vs. Nondeterministic systems

◦ Deterministic systems’ future behavior can be precisely

predicted given their initial state.

◦ Nondeterministic systems involve inherent randomness,

making their future behavior unpredictable.
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State Space Reconstruction

• Abstract representation of a dynamic system’s complete
condition.

◦ A multidimensional space where each dimension corresponds

to a variable that somehow describes the system. Consider

how temperature describes the overall weather.

◦ A state represents a snapshot of the system. Analogous to a

data point in a time series.

• But why use this technique?

◦ We do not always know all the internal variables!

◦ Reconstruction using temperature may be similar to, say,

reconstruction using precipitation.
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Delay Coordinate Embedding

• Reconstructs a state space from a single time series.

◦ More than one dimension from a scalar time series– how is

that possible?

• Consider a scalar measurement x , say temperature. We can

construct an m-dimensional vector
−→
R (t) from m

time-delayed measurements x(t), such that
−→
R (t) = [x(t), x(t − τ), x(t − 2τ), ..., x(t − (m − 1)τ)]

where t is the time of measurement and τ is the chosen

time delay. The time-delay variable τ represents the

intervals of these measurements.

• How does this translate to practical work?
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Delay Coordinate Embedding Cont.
Example to visualize

Consider the following time series
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Example to visualize

Here are the first eight data points
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Delay Coordinate Embedding Cont.
Example to visualize

Let’s embed some points!

Notice the time interval τ is two. Choosing τ is also a difficult

task that is studied on its own– what value is too little vs. too

much?
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Delay Coordinate Embedding Cont.
Example to visualize

Let’s embed some points!

We can plot these points in a 3D space. When we do this for all

data points, we can plot the trajectory.
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Lyapunov Exponents, λ

• Russian mathematician Aleksandr Lyapunov.

• Quantifies the sensitivity of a dynamical system to its initial

conditions.

• There is more than one exponent for a system– one for each

variable. However, only one determines the overall behavior.

• λ > 0, signifies chaotic behavior within the system.

• Common method used: Rosenstein’s algorithm
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Lyapunov Exponents, λ

• Russian mathematician Aleksandr Lyapunov.

• Quantifies the sensitivity of a dynamical system to its initial

conditions.

• There is more than one exponent for a system– one for each

variable. However, only one determines the overall behavior.

• λ > 0, signifies chaotic behavior within the system

• Common method used: Rosenstein’s algorithm

The Lyapunov exponent for this time series is 0.9056.
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Attractors

• Mathematical constructs that provide insight into the

long-term evolution of dynamic systems.
• Three kinds

1. Fixed-point attractors represent rest.

2. Periodic attractors represent repeating patterns or cycles,

such as periodic orbits.

3. Strange attractors represent complex, non-repeating

attractors found in chaotic systems. Turbulence is a prime

example of such behavior.

• Lorenz first noticed chaotic systems in the behavior of these

three equations.

dx/dt = −ax + ay

dy/dt = −xz + bx − y

dz/dt = −xy − cz
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Attractors Cont.

dx/dt = −ax + ay

dy/dt = −xz + bx − y

dz/dt = −xy − cz

The time series produced by these equations looks like this

We have been looking at the Lorenz attractor’s time series.

What does it look like?
13 / 18



The Lorenz Attractor

Choosing τ = 10, we get

Let’s try other τ values to see their effect on reconstruction.

Click here!
14 / 18

https://krischebo.github.io/capstone.html
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Conclusion

Here is what we covered today:

1. Introduction

◦ How NTSA came to be

◦ Some important work in the field

2. Foundations

◦ Basic terminology

◦ State space reconstruction

◦ Delay coordinate embedding

3. Characterization

◦ Lyapunov exponents

◦ Attractors

Overall, you should have a basic understanding of how nonlinear

time series analysis works.
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Thank you for listening!

Krishna Chebolu

ksc5435@truman.edu
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