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e Traces back to Henri Poincaré’s three-body problem in the
late 1800s.

o Refers to the challenge of accurately predicting the future
positions and motions of three celestial bodies.
o Poincaré laid the foundations of chaos theory.

e In the 1960s, Edward Lorenz formulated a system of
equations.

o Highlighted the sensitivity to initial conditions, a hallmark of
chaotic systems.

o Guided researchers towards nonlinear dynamics.
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Terminology
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e Time series
o Think of pictures in a video— the video is a time series of
pictures.
e Trajectory: the path created when we plot data points;
shows us how a system changes.
e Deterministic vs. Nondeterministic systems

o Deterministic systems’ future behavior can be precisely
predicted given their initial state.

o Nondeterministic systems involve inherent randomness,
making their future behavior unpredictable.
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State Space Reconstruction

e Abstract representation of a dynamic system'’s complete
condition.

o A multidimensional space where each dimension corresponds
to a variable that somehow describes the system. Consider
how temperature describes the overall weather.

o A state represents a snapshot of the system. Analogous to a
data point in a time series.

e But why use this technique?

o We do not always know all the internal variables!
o Reconstruction using temperature may be similar to, say,
reconstruction using precipitation.
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e Reconstructs a state space from a single time series.
o More than one dimension from a scalar time series— how is
that possible?
e Consider a scalar measurement x, say temperature. We can
construct an m-dimensional vector ﬁ(t) from m

time-delayed measurements x(t), such that
R(t) = [x(£), x(t — 1), x(t — 27), oy x(t — (m — 1)7)]
where t is the time of measurement and 7 is the chosen

time delay. The time-delay variable 7 represents the

intervals of these measurements.
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Delay Coordinate Embedding

e Reconstructs a state space from a single time series.
o More than one dimension from a scalar time series— how is
that possible?
e Consider a scalar measurement x, say temperature. We can
construct an m-dimensional vector ﬁ(t) from m
time-delayed measurements x(t), such that

R (1) = [x(t), x(t — 1), x(t — 27), ooy x(t — (m — 1)7)]
where t is the time of measurement and 7 is the chosen

time delay. The time-delay variable 7 represents the
intervals of these measurements.

e How does this translate to practical work?
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Delay Coordinate Embedding Cont.

Example to visualize

Consider the following time series

Value

15 4

10 4

Time Series Data

T T T T T T T
0 2500 5000 7500 10000 12500 15000
Time
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Delay Coordinate Embedding Cont.

Example to visualize

Here are the first eight data points

-0.156058
-0.071057
0.00456
0.072342
0.133683
0.189835
0.241921
0.290958

9/18



Delay Coordinate Embedding Cont.

Example to visualize

Let's embed some points!

-0.156058
-0.071057
0.00456
0.072342
0.133683
0.189835
0.241921
0.290958

— (-0.156058 , 0.00456, 0.133683)

Notice the time interval 7 is two. Choosing 7 is also a difficult
task that is studied on its own— what value is too little vs. too
much?
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Delay Coordinate Embedding Cont.

Example to visualize

Let's embed some points!

-0.156058
-0.071057 ——
0.00456
0.072342 ———— (-0.071057, 0.072342, 0.189835)
0.133683
0.189835—
0.241921
0.290958

We can plot these points in a 3D space. When we do this for all
data points, we can plot the trajectory.
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Lyapunov Exponents, A

e Russian mathematician Aleksandr Lyapunov.
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Lyapunov Exponents, A

e Russian mathematician Aleksandr Lyapunov.
e Quantifies the sensitivity of a dynamical system to its initial
conditions.

There is more than one exponent for a system— one for each

variable. However, only one determines the overall behavior.

A > 0, signifies chaotic behavior within the system

Common method used: Rosenstein’s algorithm

Value

The Lyapunov exponent for this time series is 0.9056.
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Attractors

e Mathematical constructs that provide insight into the
long-term evolution of dynamic systems.
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e Mathematical constructs that provide insight into the
long-term evolution of dynamic systems.
e Three kinds
1. Fixed-point attractors represent rest.
2. Periodic attractors represent repeating patterns or cycles,
such as periodic orbits.
3. Strange attractors represent complex, non-repeating
attractors found in chaotic systems. Turbulence is a prime
example of such behavior.
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Attractors

e Mathematical constructs that provide insight into the
long-term evolution of dynamic systems.
e Three kinds

1. Fixed-point attractors represent rest.

2. Periodic attractors represent repeating patterns or cycles,
such as periodic orbits.

3. Strange attractors represent complex, non-repeating
attractors found in chaotic systems. Turbulence is a prime
example of such behavior.

e Lorenz first noticed chaotic systems in the behavior of these
three equations.
dx/dt = —ax + ay

dy/dt = —xz+bx—y
dz/dt = —xy — cz
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Attractors Cont.

dx/dt = —ax + ay
dy/dt = —xz + bx — y
dz/dt = —xy — cz

The time series produced by these equations looks like this

Time Series Data

Value

0 2500 5000 7500 10000 12500 15000
Time

We have been looking at the Lorenz attractor’s time series.

What does it look like?
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The Lorenz Attractor

Choosing 7 = 10,

we get

SIXe A

Let's try other 7 values to see their effect on reconstruction.
Click here!
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https://krischebo.github.io/capstone.html
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Conclusion

Here is what we covered today:
1. Introduction

o How NTSA came to be
o Some important work in the field

2. Foundations

o Basic terminology
o State space reconstruction
o Delay coordinate embedding

3. Characterization
o Lyapunov exponents
o Attractors
Overall, you should have a basic understanding of how nonlinear
time series analysis works.
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Thank you for listening!

Krishna Chebolu

kscb435@truman.edu
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