Foundations of Nonlinear Time Series Analysis AMS Spring 2024 Central Sectional Conference

Krishna Chebolu

Department of Mathematics, Truman State University

May 27, 2024

Outline

[History](#page-2-0)

[Foundations of NTSA](#page-6-0)

[Terminology](#page-7-0) [State Space Reconstruction](#page-11-0) [Delay Coordinate Embedding](#page-17-0)

[Mathematical Characterization](#page-26-0)

[Lyapunov Exponents](#page-27-0) **[Attractors](#page-33-0)**

[Conclusion](#page-38-0)

What Is Next

[History](#page-2-0)

[Foundations of NTSA](#page-6-0)

[Terminology](#page-7-0) [State Space Reconstruction](#page-11-0) [Delay Coordinate Embedding](#page-17-0)

[Mathematical Characterization](#page-26-0) [Lyapunov Exponents](#page-27-0) [Attractors](#page-33-0)

[Conclusion](#page-38-0)

Nonlinear time series analysis

- Traces back to Henri Poincaré's three-body problem in the late 1800s.
	- Refers to the challenge of accurately predicting the future positions and motions of three celestial bodies.
	- Poincar´e laid the foundations of chaos theory.
- In the 1960s, Edward Lorenz formulated a system of equations.
	- Highlighted the sensitivity to initial conditions, a hallmark of chaotic systems.
	- Guided researchers towards nonlinear dynamics.

Nonlinear time series analysis

- Traces back to Henri Poincaré's three-body problem in the late 1800s.
	- Refers to the challenge of accurately predicting the future positions and motions of three celestial bodies.
	- Poincar´e laid the foundations of chaos theory.
- In the 1960s, Edward Lorenz formulated a system of equations.
	- Highlighted the sensitivity to initial conditions, a hallmark of chaotic systems.
	- Guided researchers towards nonlinear dynamics.

Nonlinear time series analysis

- Traces back to Henri Poincaré's three-body problem in the late 1800s.
	- Refers to the challenge of accurately predicting the future positions and motions of three celestial bodies.
	- Poincar´e laid the foundations of chaos theory.
- In the 1960s, Edward Lorenz formulated a system of equations.
	- Highlighted the sensitivity to initial conditions, a hallmark of chaotic systems.
	- Guided researchers towards nonlinear dynamics.

[Foundations of NTSA](#page-6-0)

[Terminology](#page-7-0) [State Space Reconstruction](#page-11-0) [Delay Coordinate Embedding](#page-17-0)

[Mathematical Characterization](#page-26-0) [Lyapunov Exponents](#page-27-0) [Attractors](#page-33-0)

[Conclusion](#page-38-0)

• Time series

- Think of pictures in a video– the video is a time series of pictures.
- Trajectory: the path created when we plot data points; shows us how a system changes.
- Deterministic vs. Nondeterministic systems
	- Deterministic systems' future behavior can be precisely predicted given their initial state.
	- Nondeterministic systems involve inherent randomness, making their future behavior unpredictable.

Terminology

• Time series

- Think of pictures in a video– the video is a time series of pictures.
- Trajectory: the path created when we plot data points; shows us how a system changes.
- Deterministic vs. Nondeterministic systems
	- Deterministic systems' future behavior can be precisely predicted given their initial state.
	- Nondeterministic systems involve inherent randomness, making their future behavior unpredictable.

Terminology

• Time series

- Think of pictures in a video– the video is a time series of pictures.
- Trajectory: the path created when we plot data points; shows us how a system changes.
- Deterministic vs. Nondeterministic systems
	- Deterministic systems' future behavior can be precisely predicted given their initial state.
	- Nondeterministic systems involve inherent randomness, making their future behavior unpredictable.

Terminology

- Time series
	- Think of pictures in a video– the video is a time series of pictures.
- Trajectory: the path created when we plot data points; shows us how a system changes.
- Deterministic vs. Nondeterministic systems
	- Deterministic systems' future behavior can be precisely predicted given their initial state.
	- Nondeterministic systems involve inherent randomness, making their future behavior unpredictable.

- • Abstract representation of a dynamic system's complete condition.
	- A multidimensional space where each dimension corresponds to a variable that somehow describes the system. Consider how temperature describes the overall weather.
	- A state represents a snapshot of the system. Analogous to a data point in a time series.
- But why use this technique?
	- We do not always know all the internal variables!
	- Reconstruction using temperature may be similar to, say, reconstruction using precipitation.

- Abstract representation of a dynamic system's complete condition.
	- A multidimensional space where each dimension corresponds to a variable that somehow describes the system. Consider how temperature describes the overall weather.
	- A state represents a snapshot of the system. Analogous to a data point in a time series.
- But why use this technique?
	- We do not always know all the internal variables!
	- Reconstruction using temperature may be similar to, say, reconstruction using precipitation.

- Abstract representation of a dynamic system's complete condition.
	- A multidimensional space where each dimension corresponds to a variable that somehow describes the system. Consider how temperature describes the overall weather.
	- A state represents a snapshot of the system. Analogous to a data point in a time series.
- But why use this technique?
	- We do not always know all the internal variables!
	- Reconstruction using temperature may be similar to, say, reconstruction using precipitation.

- Abstract representation of a dynamic system's complete condition.
	- A multidimensional space where each dimension corresponds to a variable that somehow describes the system. Consider how temperature describes the overall weather.
	- A state represents a snapshot of the system. Analogous to a data point in a time series.
- But why use this technique?
	- We do not always know all the internal variables!
	- Reconstruction using temperature may be similar to, say, reconstruction using precipitation.

- Abstract representation of a dynamic system's complete condition.
	- A multidimensional space where each dimension corresponds to a variable that somehow describes the system. Consider how temperature describes the overall weather.
	- A state represents a snapshot of the system. Analogous to a data point in a time series.
- But why use this technique?
	- We do not always know all the internal variables!
	- Reconstruction using temperature may be similar to, say, reconstruction using precipitation.

- Abstract representation of a dynamic system's complete condition.
	- A multidimensional space where each dimension corresponds to a variable that somehow describes the system. Consider how temperature describes the overall weather.
	- A state represents a snapshot of the system. Analogous to a data point in a time series.
- But why use this technique?
	- We do not always know all the internal variables!
	- Reconstruction using temperature may be similar to, say, reconstruction using precipitation.

- • Reconstructs a state space from a single time series.
	- More than one dimension from a scalar time series– how is that possible?
- Consider a scalar measurement x , say temperature. We can construct an *m*-dimensional vector $\overrightarrow{R}(t)$ from *m* time-delayed measurements $x(t)$, such that $\vec{R}(t) = [x(t), x(t-\tau), x(t-2\tau), ..., x(t-(m-1)\tau)]$ where t is the time of measurement and τ is the chosen

time delay. The time-delay variable τ represents the intervals of these measurements.

• How does this translate to practical work?

- Reconstructs a state space from a single time series.
	- More than one dimension from a scalar time series– how is that possible?
- Consider a scalar measurement x , say temperature. We can construct an *m*-dimensional vector $\overrightarrow{R}(t)$ from *m* time-delayed measurements $x(t)$, such that $\vec{R}(t) = [x(t), x(t-\tau), x(t-2\tau), ..., x(t-(m-1)\tau)]$ where t is the time of measurement and τ is the chosen

time delay. The time-delay variable τ represents the intervals of these measurements.

• How does this translate to practical work?

- Reconstructs a state space from a single time series.
	- More than one dimension from a scalar time series– how is that possible?
- Consider a scalar measurement x , say temperature. We can construct an *m*-dimensional vector $\overrightarrow{R}(t)$ from *m* time-delayed measurements $x(t)$, such that $\vec{R}(t) = [x(t), x(t-\tau), x(t-2\tau), ..., x(t-(m-1)\tau)]$ where t is the time of measurement and τ is the chosen

time delay. The time-delay variable τ represents the intervals of these measurements.

• How does this translate to practical work?

- Reconstructs a state space from a single time series.
	- More than one dimension from a scalar time series– how is that possible?
- Consider a scalar measurement x , say temperature. We can construct an *m*-dimensional vector $\overline{R}(t)$ from *m* time-delayed measurements $x(t)$, such that $\vec{R}(t) = [x(t), x(t - \tau), x(t - 2\tau), ..., x(t - (m - 1)\tau)]$ where t is the time of measurement and τ is the chosen time delay. The time-delay variable τ represents the intervals of these measurements.
- How does this translate to practical work?

- Reconstructs a state space from a single time series.
	- More than one dimension from a scalar time series– how is that possible?
- Consider a scalar measurement x , say temperature. We can construct an *m*-dimensional vector $\overline{R}(t)$ from *m* time-delayed measurements $x(t)$, such that $\vec{R}(t) = [x(t), x(t - \tau), x(t - 2\tau), ..., x(t - (m - 1)\tau)]$ where t is the time of measurement and τ is the chosen time delay. The time-delay variable τ represents the intervals of these measurements.
- How does this translate to practical work?

Example to visualize

Consider the following time series

Example to visualize

Here are the first eight data points

Example to visualize

Let's embed some points!

Notice the time interval τ is two. Choosing τ is also a difficult task that is studied on its own– what value is too little vs. too much?

Example to visualize

Let's embed some points!

We can plot these points in a 3D space. When we do this for all data points, we can plot the trajectory.

[Foundations of NTSA](#page-6-0)

[Terminology](#page-7-0) [State Space Reconstruction](#page-11-0) [Delay Coordinate Embedding](#page-17-0)

[Mathematical Characterization](#page-26-0)

[Lyapunov Exponents](#page-27-0) **[Attractors](#page-33-0)**

[Conclusion](#page-38-0)

• Russian mathematician Aleksandr Lyapunov.

- Quantifies the sensitivity of a dynamical system to its initial conditions.
- There is more than one exponent for a system- one for each variable. However, only one determines the overall behavior.
- $\lambda > 0$, signifies chaotic behavior within the system.
- Common method used: Rosenstein's algorithm

- Russian mathematician Aleksandr Lyapunov.
- Quantifies the sensitivity of a dynamical system to its initial conditions.
- There is more than one exponent for a system- one for each variable. However, only one determines the overall behavior.
- $\lambda > 0$, signifies chaotic behavior within the system.
- Common method used: Rosenstein's algorithm

- Russian mathematician Aleksandr Lyapunov.
- Quantifies the sensitivity of a dynamical system to its initial conditions.
- There is more than one exponent for a system– one for each variable. However, only one determines the overall behavior.
- $\lambda > 0$, signifies chaotic behavior within the system.
- Common method used: Rosenstein's algorithm

- Russian mathematician Aleksandr Lyapunov.
- Quantifies the sensitivity of a dynamical system to its initial conditions.
- There is more than one exponent for a system– one for each variable. However, only one determines the overall behavior.
- $\lambda > 0$, signifies chaotic behavior within the system.
- Common method used: Rosenstein's algorithm

- Russian mathematician Aleksandr Lyapunov.
- Quantifies the sensitivity of a dynamical system to its initial conditions.
- There is more than one exponent for a system– one for each variable. However, only one determines the overall behavior.
- $\lambda > 0$, signifies chaotic behavior within the system.
- Common method used: Rosenstein's algorithm

- Russian mathematician Aleksandr Lyapunov.
- Quantifies the sensitivity of a dynamical system to its initial conditions.
- There is more than one exponent for a system– one for each variable. However, only one determines the overall behavior.
- $\lambda > 0$, signifies chaotic behavior within the system
- Common method used: Rosenstein's algorithm

The Lyapunov exponent for this time series is 0.9056.

Attractors

- Mathematical constructs that provide insight into the long-term evolution of dynamic systems.
- Three kinds
	- 1. Fixed-point attractors represent rest.
	- 2. Periodic attractors represent repeating patterns or cycles, such as periodic orbits.
	- 3. Strange attractors represent complex, non-repeating attractors found in chaotic systems. Turbulence is a prime example of such behavior.
- Lorenz first noticed chaotic systems in the behavior of these three equations.

 $dx/dt = -ax + ay$ $dy/dt = -xz + bx - y$ $dz/dt = -xy - cz$

Attractors

- Mathematical constructs that provide insight into the long-term evolution of dynamic systems.
- Three kinds
	- 1. Fixed-point attractors represent rest.
	- 2. Periodic attractors represent repeating patterns or cycles, such as periodic orbits.
	- 3. Strange attractors represent complex, non-repeating attractors found in chaotic systems. Turbulence is a prime example of such behavior.
- Lorenz first noticed chaotic systems in the behavior of these three equations.

 $dx/dt = -ax + ay$ $dy/dt = -xz + bx - y$ $dz/dt = -xy - cz$

Attractors

- Mathematical constructs that provide insight into the long-term evolution of dynamic systems.
- Three kinds
	- 1. Fixed-point attractors represent rest.
	- 2. Periodic attractors represent repeating patterns or cycles, such as periodic orbits.
	- 3. Strange attractors represent complex, non-repeating attractors found in chaotic systems. Turbulence is a prime example of such behavior.
- Lorenz first noticed chaotic systems in the behavior of these three equations.

$$
dx/dt = -ax + ay
$$

\n
$$
dy/dt = -xz + bx - y
$$

\n
$$
dz/dt = -xy - cz
$$

Attractors Cont.

$$
dx/dt = -ax + ay
$$

\n
$$
dy/dt = -xz + bx - y
$$

\n
$$
dz/dt = -xy - cz
$$

The time series produced by these equations looks like this

We have been looking at the Lorenz attractor's time series. What does it look like?

The Lorenz Attractor

Choosing $\tau = 10$, we get

Let's try other τ values to see their effect on reconstruction. [Click here!](https://krischebo.github.io/capstone.html)

[Foundations of NTSA](#page-6-0)

[Terminology](#page-7-0) [State Space Reconstruction](#page-11-0) [Delay Coordinate Embedding](#page-17-0)

[Mathematical Characterization](#page-26-0) [Lyapunov Exponents](#page-27-0) [Attractors](#page-33-0)

[Conclusion](#page-38-0)

Conclusion

Here is what we covered today:

- 1. Introduction
	- How NTSA came to be
	- Some important work in the field
- 2. Foundations
	- Basic terminology
	- State space reconstruction
	- Delay coordinate embedding
- 3. Characterization
	- Lyapunov exponents
	- Attractors

Overall, you should have a basic understanding of how nonlinear time series analysis works.

References

Harold Edwin Hurst. "Long-term storage capacity of reservoirs". In: Transactions of the American society of civil engineers 116.1 (1951), pp. 770-799.

Edward N Lorenz. "Deterministic nonperiodic flow". In: Journal of atmospheric sciences 20.2 (1963) , pp. $130-141$.

Edward N Lorenz. "Atmospheric predictability as revealed by naturally occurring analogues". In: Journal of Atmospheric Sciences 26.4 (1969), pp. 636-646.

Benoit B Mandelbrot and Michael Aizenman. Fractals: form, chance, and dimension. 1979.

Norman H Packard et al. "Geometry from a time series". In: Physical review letters 45.9 (1980), p. 712.

Alan Wolf et al. "Determining Lyapunov exponents from a time series". In: Physica D: nonlinear phenomena 16.3 (1985), pp. 285-317.

Michael F Barnsley et al. Fractals in nature: from characterization to simulation. Springer, 1988.

AA Tsonis and JB Elsner. "Chaos, strange attractors, and weather". In: Bulletin of the American Meteorological Society 70.1 (1989), pp. 14-23.

Robert Vautard and Michael Ghil. "Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series". In: Physica D: Nonlinear Phenomena 35.3 (1989), pp. 395-424.

Martin Casdagli et al. "State space reconstruction in the presence of noise". In: Physica D: Nonlinear Phenomena 51.1-3 (1991), pp. 52-98.

KR1090334 Sreenivasan. "Fractals and multifractals in fluid turbulence". In: Annual review of fluid mechanics 23.1 (1991), pp. 539-604.

Matthew B Kennel, Reggie Brown, and Henry DI Abarbanel. "Determining embedding dimension for phase-space reconstruction using a geometrical construction". In: *Physical review* A 45.6 (1992), p. 3403.

References

Michael T Rosenstein, James J Collins, and Carlo J De Luca. "A practical method for calculating largest Lyapunov exponents from small data sets". In: Physica D: Nonlinear Phenomena 65.1-2 (1993) , pp. 117-134.

C-K Peng et al. "Mosaic organization of DNA nucleotides". In: Physical review e 49.2 (1994). p. 1685.

Timo Teräsvirta. "Specification, estimation, and evaluation of smooth transition autoregressive models". In: *Journal of the american Statistical association* 89.425 (1994), pp. 208-218.

Jean-Pierre Eckmann, S Oliffson Kamphorst, David Ruelle, et al. "Recurrence plots of dynamical systems". In: World Scientific Series on Nonlinear Science Series A 16 (1995), pp. 441–446.

June Barrow-Green, *Poincaré and the three body problem*, 11. American Mathematical Soc., 1997.

Carl Rhodes and Manfred Morari. "The false nearest neighbors algorithm: An overview". In: Computers β Chemical Engineering 21 (1997), S1149-S1154.

Vincent Moron, R Vautard, and M Ghil. "Trends, interdecadal and interannual oscillations in global sea-surface temperatures". In: *Climate Dynamics* 14 (1998), pp. 545-569.

M Cencini et al. "Chaos or noise: Difficulties of a distinction". In: Physical Review E 62.1 (2000), p. 427.

Mercedes Pascual et al. "Cholera dynamics and El Nino-southern oscillation". In: Science 289.5485 (2000) , pp. 1766-1769.

William T Ball et al. "Evidence for a continuous decline in lower stratospheric ozone offsetting ozone laver recovery". In: Atmospheric Chemistry and Physics 18.2 (2018), pp. 1379-1394.

Glenn R McGregor and Kristie Ebi. "El Niño Southern Oscillation (ENSO) and health: An overview for climate and health researchers". In: Atmosphere 9.7 (2018), p. 282.

Yong Zou et al. "Complex network approaches to nonlinear time series analysis". In: Physics Reports 787 (2019), pp. 1-97.

Benjamin Lindemann et al. "A survey on long short-term memory networks for time series prediction". In: Procedia CIRP 99 (2021), pp. 650-655.

References

Thomas Schreiber and Andreas Schmitz. "Surrogate time series". In: Physica D: Nonlinear Pheпотепа 142.3-4 (2000), рр. 346-382.

Anthony D Hall, Joakim Skalin, and Timo Teräsvirta. "A nonlinear time series model of El Nino". In: Environmental Modelling & Software 16.2 (2001), pp. 139-146.

Michael Ghil et al. "Advanced spectral methods for climatic time series". In: Reviews of geophysics 40.1 (2002) , pp. $3-1$.

Alicia M Ellis and Eric Post. "Population response to climate change: linear ys. non-linear modeling approaches". In: *BMC ecology* 4.1 (2004), pp. 1-9.

Richard E. Chandler. "On the use of generalized linear models for interpreting climate variability". In: *Environmetrics* 16 (7 Nov. 2005), pp. 699-715, ISSN: 11804009, pol: 10.1002/env.731.

Jonathan B Dingwell, "Lyapunov exponents". In: Wiley encyclopedia of biomedical engineering $(2006).$

Guus JM Velders et al. "The importance of the Montreal Protocol in protecting climate". In: Proceedings of the National Academy of Sciences 104.12 (2007), pp. 4814-4819.

Nicholas Kantas et al. "An overview of sequential Monte Carlo methods for parameter estimation in general state-space models". In: IFAC Proceedings Volumes 42.10 (2009), pp. 774-785.

Reik V Donner et al. "Recurrence networks—A novel paradigm for nonlinear time series analysis". In: New Journal of Physics 12.3 (2010), p. 033025.

Ladislav Krištoufek et al. "Rescaled range analysis and detrended fluctuation analysis: Finite sample properties and confidence intervals". In: Czech Economic Review 4.03 (2010), pp. 315-329.

JH Lucio, R Valdés, and LR Rodriguez. "Improvements to surrogate data methods for nonstationary time series". In: *Physical Review E* 85.5 (2012), p. 056202.

Bulbul Jan et al. "Study of probabilistic modeling of stratospheric ozone fluctuations over Pakistan and China regions". In: Journal of Atmospheric and Solar-Terrestrial Physics 109 (2014), pp. 43-47.

Thank you for listening!

Krishna Chebolu

ksc5435@truman.edu