Introduction to Nonlinear Time Series Analysis

Capstone Seminar, Truman State University

Krishna Chebolu

Department of Mathematics, Truman State University

December 4, 2023

Advised by Dr. David Garth

Outline

Introduction

History Important Work

Foundations of NTSA

Terminology
State Space Reconstruction
Delay Coordinate Embedding

Mathematical Characterization

Lyapunov Exponents Attractors

Conclusion

What Is Next

Introduction

History

Important Work

Foundations of NTSA

Terminology

State Space Reconstruction

Delay Coordinate Embedding

Mathematical Characterization

Lyapunov Exponents

Attractors

Conclusion

- Traces back to Henri Poincaré's three-body problem in the late 1800s.
 - Refers to the challenge of accurately predicting the future positions and motions of three celestial bodies.
 - Poincaré laid the foundations of chaos theory.
- In the 1960s, Edward Lorenz formulated a system of equations.
 - Highlighted the sensitivity to initial conditions, a hallmark of chaotic systems.
 - o Guided researchers towards nonlinear dynamics.
- Simultaneously, Mandelbrot studied fractals.
 - Geometric shapes containing detailed structures at small scales. They repeat patterns as you zoom in.

- Traces back to Henri Poincaré's three-body problem in the late 1800s.
 - Refers to the challenge of accurately predicting the future positions and motions of three celestial bodies.
 - Poincaré laid the foundations of chaos theory.
- In the 1960s, Edward Lorenz formulated a system of equations.
 - Highlighted the sensitivity to initial conditions, a hallmark of chaotic systems.
 - Guided researchers towards nonlinear dynamics
- Simultaneously, Mandelbrot studied fractals.
 - Geometric shapes containing detailed structures at smal scales. They repeat patterns as you zoom in.

- Traces back to Henri Poincaré's three-body problem in the late 1800s.
 - Refers to the challenge of accurately predicting the future positions and motions of three celestial bodies.
 - Poincaré laid the foundations of chaos theory.
- In the 1960s, Edward Lorenz formulated a system of equations.
 - Highlighted the sensitivity to initial conditions, a hallmark of chaotic systems.
 - o Guided researchers towards nonlinear dynamics.
- Simultaneously, Mandelbrot studied fractals.
 - Geometric shapes containing detailed structures at small scales. They repeat patterns as you zoom in.

- Traces back to Henri Poincaré's three-body problem in the late 1800s.
 - Refers to the challenge of accurately predicting the future positions and motions of three celestial bodies.
 - Poincaré laid the foundations of chaos theory.
- In the 1960s, Edward Lorenz formulated a system of equations.
 - Highlighted the sensitivity to initial conditions, a hallmark of chaotic systems.
 - Guided researchers towards nonlinear dynamics.
- Simultaneously, Mandelbrot studied fractals.
 - Geometric shapes containing detailed structures at small scales. They repeat patterns as you zoom in.

- Natural fluctuations occur over various timescales, from seasons to millennia.
- NTSA gained prominence in climate science during the late 20th century.
 - Researchers sought to study the inherently nonlinear behavior of our planet's climate system.
 - o Increase in computational power.
- Currently, there are many NTSA methods used, some are
 - Rescaled range analysis
 - Detrended fluctuation analysis
 - Singular spectrum analysis
 - o etc.

- Natural fluctuations occur over various timescales, from seasons to millennia.
- NTSA gained prominence in climate science during the late 20th century.
 - Researchers sought to study the inherently nonlinear behavior of our planet's climate system.
 - o Increase in computational power.
- Currently, there are many NTSA methods used, some are
 - Rescaled range analysis
 - Detrended fluctuation analysis
 - Singular spectrum analysis
 - o etc.

- Natural fluctuations occur over various timescales, from seasons to millennia.
- NTSA gained prominence in climate science during the late 20th century.
 - Researchers sought to study the inherently nonlinear behavior of our planet's climate system.
 - Increase in computational power.
- Currently, there are many NTSA methods used, some are
 - Rescaled range analysis
 - Detrended fluctuation analysis
 - Singular spectrum analysis
 - o etc.

- Natural fluctuations occur over various timescales, from seasons to millennia.
- NTSA gained prominence in climate science during the late 20th century.
 - Researchers sought to study the inherently nonlinear behavior of our planet's climate system.
 - Increase in computational power.
- Currently, there are many NTSA methods used, some are
 - Rescaled range analysis
 - Detrended fluctuation analysis
 - Singular spectrum analysis
 - o etc.

Important Work

All works are in the references section

- Deterministic Nonperiodic Flow by Edward Lorenz, 1963
 - Mentioned earlier
 – sensitivity to initial conditions
 - Famous term butterfly effect; revolutionized meteorology and physics.
- Geometry from a Time Series by Packard et al., 1980
 - Proposed phase space reconstruction—we will talk about this soon.
 - This paper is essential for anyone interested in chaos theory, nonlinear dynamics, and the practical applications of these concepts in fields ranging from physics to biology and engineering.

Important Work

All works are in the references section

- Deterministic Nonperiodic Flow by Edward Lorenz, 1963
 - Mentioned earlier
 – sensitivity to initial conditions
 - Famous term butterfly effect; revolutionized meteorology and physics.
- Geometry from a Time Series by Packard et al., 1980
 - Proposed phase space reconstruction—we will talk about this soon.
 - This paper is essential for anyone interested in chaos theory, nonlinear dynamics, and the practical applications of these concepts in fields ranging from physics to biology and engineering.

Important Work

All works are in the references section

- Deterministic Nonperiodic Flow by Edward Lorenz, 1963
 - Mentioned earlier
 – sensitivity to initial conditions
 - Famous term butterfly effect; revolutionized meteorology and physics.
- Geometry from a Time Series by Packard et al., 1980
 - Proposed phase space reconstruction— we will talk about this soon.
 - This paper is essential for anyone interested in chaos theory, nonlinear dynamics, and the practical applications of these concepts in fields ranging from physics to biology and engineering.

What Is Next

Introduction History Important Work

Foundations of NTSA

Terminology
State Space Reconstruction
Delay Coordinate Embedding

Mathematical Characterization Lyapunov Exponents Attractors

Conclusion

- Time series
 - Think of pictures in a video
 — the video is a time series of pictures.
- Trajectory: the path created when we plot data points; shows us how a system changes.
- Deterministic vs. Nondeterministic systems
 - Deterministic systems' future behavior can be precisely predicted given their initial state.
 - Nondeterministic systems involve inherent randomness, making their future behavior unpredictable.

- Time series
 - Think of pictures in a video
 – the video is a time series of pictures.
- Trajectory: the path created when we plot data points; shows us how a system changes.
- Deterministic vs. Nondeterministic systems
 - Deterministic systems' future behavior can be precisely predicted given their initial state.
 - Nondeterministic systems involve inherent randomness, making their future behavior unpredictable.

- Time series
 - Think of pictures in a video
 – the video is a time series of pictures.
- Trajectory: the path created when we plot data points; shows us how a system changes.
- Deterministic vs. Nondeterministic systems
 - Deterministic systems' future behavior can be precisely predicted given their initial state.
 - Nondeterministic systems involve inherent randomness making their future behavior unpredictable.

- Time series
 - Think of pictures in a video
 – the video is a time series of pictures.
- Trajectory: the path created when we plot data points; shows us how a system changes.
- Deterministic vs. Nondeterministic systems
 - Deterministic systems' future behavior can be precisely predicted given their initial state.
 - Nondeterministic systems involve inherent randomness, making their future behavior unpredictable.

- Abstract representation of a dynamic system's complete condition.
 - A multidimensional space where each dimension corresponds to a variable that somehow describes the system. Consider how temperature describes the overall weather.
 - A state represents a snapshot of the system. Analogous to a data point in a time series.
- But why use this technique?
 - We do not always know all the internal variables!
 - Reconstruction using temperature may be similar to, say reconstruction using precipitation.

- Abstract representation of a dynamic system's complete condition.
 - A multidimensional space where each dimension corresponds to a variable that somehow describes the system. Consider how temperature describes the overall weather.
 - A state represents a snapshot of the system. Analogous to a data point in a time series.
- But why use this technique?
 - We do not always know all the internal variables!
 - Reconstruction using temperature may be similar to, say, reconstruction using precipitation.

- Abstract representation of a dynamic system's complete condition.
 - A multidimensional space where each dimension corresponds to a variable that somehow describes the system. Consider how temperature describes the overall weather.
 - A state represents a snapshot of the system. Analogous to a data point in a time series.
- But why use this technique?
 - We do not always know all the internal variables!
 - Reconstruction using temperature may be similar to, say reconstruction using precipitation.

- Abstract representation of a dynamic system's complete condition.
 - A multidimensional space where each dimension corresponds to a variable that somehow describes the system. Consider how temperature describes the overall weather.
 - A state represents a snapshot of the system. Analogous to a data point in a time series.
- But why use this technique?
 - We do not always know all the internal variables!
 - Reconstruction using temperature may be similar to, say reconstruction using precipitation.

- Abstract representation of a dynamic system's complete condition.
 - A multidimensional space where each dimension corresponds to a variable that somehow describes the system. Consider how temperature describes the overall weather.
 - A state represents a snapshot of the system. Analogous to a data point in a time series.
- But why use this technique?
 - We do not always know all the internal variables!
 - Reconstruction using temperature may be similar to, say reconstruction using precipitation.

- Abstract representation of a dynamic system's complete condition.
 - A multidimensional space where each dimension corresponds to a variable that somehow describes the system. Consider how temperature describes the overall weather.
 - A state represents a snapshot of the system. Analogous to a data point in a time series.
- But why use this technique?
 - We do not always know all the internal variables!
 - Reconstruction using temperature may be similar to, say, reconstruction using precipitation.

- Reconstructs a state space from a single time series.
 - More than one dimension from a scalar time series— how is that possible?
- Consider a scalar measurement x, say temperature. We can construct an m-dimensional vector $\overrightarrow{R}(t)$ from m time-delayed measurements x(t), such that

$$\vec{R}(t) = [x(t), x(t-\tau), x(t-2\tau), ..., x(t-(m-1)\tau)]$$

where t is the time of measurement and τ is the chosen time delay. The time-delay variable τ represents the intervals of these measurements.

- Reconstructs a state space from a single time series.
 - More than one dimension from a scalar time series— how is that possible?
- Consider a scalar measurement x, say temperature. We can construct an m-dimensional vector $\overrightarrow{R}(t)$ from m time-delayed measurements x(t), such that

$$\overrightarrow{R}(t) = [x(t), x(t-\tau), x(t-2\tau), ..., x(t-(m-1)\tau)]$$

where t is the time of measurement and τ is the chosen time delay. The time-delay variable τ represents the intervals of these measurements.

- Reconstructs a state space from a single time series.
 - More than one dimension from a scalar time series— how is that possible?
- Consider a scalar measurement x, say temperature. We can construct an m-dimensional vector $\overrightarrow{R}(t)$ from m time-delayed measurements x(t), such that

$$\overrightarrow{R}(t) = [x(t), x(t-\tau), x(t-2\tau), ..., x(t-(m-1)\tau)]$$

here t is the time of measurement and τ is the chosen me delay. The time-delay variable τ represents the

- Reconstructs a state space from a single time series.
 - More than one dimension from a scalar time series— how is that possible?
- Consider a scalar measurement x, say temperature. We can construct an m-dimensional vector $\overrightarrow{R}(t)$ from m time-delayed measurements x(t), such that

$$\overrightarrow{R}(t) = [x(t), x(t-\tau), x(t-2\tau), ..., x(t-(m-1)\tau)]$$

where t is the time of measurement and τ is the chosen time delay. The time-delay variable τ represents the intervals of these measurements.

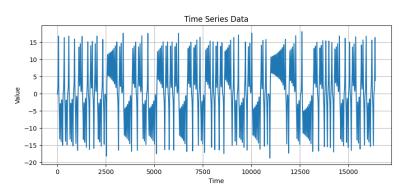
- Reconstructs a state space from a single time series.
 - More than one dimension from a scalar time series— how is that possible?
- Consider a scalar measurement x, say temperature. We can construct an m-dimensional vector $\overrightarrow{R}(t)$ from m time-delayed measurements x(t), such that

$$\overrightarrow{R}(t) = [x(t), x(t-\tau), x(t-2\tau), ..., x(t-(m-1)\tau)]$$

where t is the time of measurement and τ is the chosen time delay. The time-delay variable τ represents the intervals of these measurements.

Example to visualize

Consider the following time series



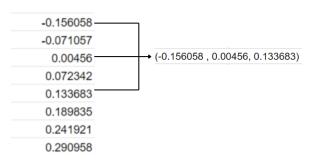
Example to visualize

Here are the first eight data points

-0.156058
-0.071057
0.00456
0.072342
0.133683
0.189835
0.241921
0.290958

Example to visualize

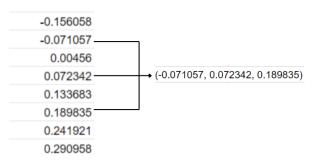
Let's embed some points!



Notice the time interval τ is two. Choosing τ is also a difficult task that is studied on its own– what value is too little vs. too much?

Example to visualize

Let's embed some points!



We can plot these points in a 3D space. When we do this for all data points, we can plot the trajectory.

What Is Next

Introduction

History Important Work

Foundations of NTSA

Terminology
State Space Reconstruction
Delay Coordinate Embedding

Mathematical Characterization

Lyapunov Exponents Attractors

Conclusion

Lyapunov Exponents, λ

- Russian mathematician Aleksandr Lyapunov.
- Quantifies the sensitivity of a dynamical system to its initial conditions.
- There is more than one exponent for a system— one for each variable. However, only one determines the overall behavior.
- $\lambda > 0$, signifies chaotic behavior within the system.
- Common method used: Rosenstein's algorithm

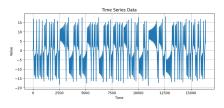
- Russian mathematician Aleksandr Lyapunov.
- Quantifies the sensitivity of a dynamical system to its initial conditions.
- There is more than one exponent for a system— one for each variable. However, only one determines the overall behavior.
- $\lambda > 0$, signifies chaotic behavior within the system.
- Common method used: Rosenstein's algorithm

- Russian mathematician Aleksandr Lyapunov.
- Quantifies the sensitivity of a dynamical system to its initial conditions.
- There is more than one exponent for a system— one for each variable. However, only one determines the overall behavior.
- $\lambda > 0$, signifies chaotic behavior within the system.
- Common method used: Rosenstein's algorithm

- Russian mathematician Aleksandr Lyapunov.
- Quantifies the sensitivity of a dynamical system to its initial conditions.
- There is more than one exponent for a system— one for each variable. However, only one determines the overall behavior.
- $\lambda > 0$, signifies chaotic behavior within the system.
- Common method used: Rosenstein's algorithm

- Russian mathematician Aleksandr Lyapunov.
- Quantifies the sensitivity of a dynamical system to its initial conditions.
- There is more than one exponent for a system— one for each variable. However, only one determines the overall behavior.
- $\lambda > 0$, signifies chaotic behavior within the system.
- Common method used: Rosenstein's algorithm

- Russian mathematician Aleksandr Lyapunov.
- Quantifies the sensitivity of a dynamical system to its initial conditions.
- There is more than one exponent for a system— one for each variable. However, only one determines the overall behavior.
- $\lambda > 0$, signifies chaotic behavior within the system
- Common method used: Rosenstein's algorithm



The Lyapunov exponent for this time series is 0.9056.

- 1. Embedding: Reconstruct the state space using delay-coordinate embedding.
- 2. Nearest neighbor search: $d_e = ||X_i X_i||$, where $i e > \mu$
- 3. Logarithmic growth: Track how the distance between data points evolves.
- 4. Estimation: Analyze the rate of this divergence.
- 5. Finding the exponent: Take the slope of a graph showing the natural logarithm of these distances.

- 1. Embedding: Reconstruct the state space using delay-coordinate embedding.
- 2. Nearest neighbor search: $d_e = ||X_i X_i||$, where $i e > \mu$
- 3. Logarithmic growth: Track how the distance between data points evolves.
- 4. Estimation: Analyze the rate of this divergence.
- 5. Finding the exponent: Take the slope of a graph showing the natural logarithm of these distances.

- 1. Embedding: Reconstruct the state space using delay-coordinate embedding.
- 2. Nearest neighbor search: $d_e = ||X_i X_i||$, where $i e > \mu$
- 3. Logarithmic growth: Track how the distance between data points evolves.
- 4. Estimation: Analyze the rate of this divergence.
- 5. Finding the exponent: Take the slope of a graph showing the natural logarithm of these distances.

- 1. Embedding: Reconstruct the state space using delay-coordinate embedding.
- 2. Nearest neighbor search: $d_e = ||X_i X_i||$, where $i e > \mu$
- 3. Logarithmic growth: Track how the distance between data points evolves.
- 4. Estimation: Analyze the rate of this divergence.
- 5. Finding the exponent: Take the slope of a graph showing the natural logarithm of these distances.

- 1. Embedding: Reconstruct the state space using delay-coordinate embedding.
- 2. Nearest neighbor search: $d_e = ||X_i X_i||$, where $i e > \mu$
- 3. Logarithmic growth: Track how the distance between data points evolves.
- 4. Estimation: Analyze the rate of this divergence.
- 5. Finding the exponent: Take the slope of a graph showing the natural logarithm of these distances.

- Embedding: Reconstruct the state space using delay-coordinate embedding.
- 2. Nearest neighbor search: $d_e = ||X_i X_i||$, where $i e > \mu$
- 3. Logarithmic growth: Track how the distance between data points evolves.
- 4. Estimation: Analyze the rate of this divergence.
- 5. Finding the exponent: Take the slope of a graph showing the natural logarithm of these distances.

Attractors

- Mathematical constructs that provide insight into the long-term evolution of dynamic systems.
- Three kinds
 - 1. Fixed-point attractors represent rest.
 - Periodic attractors represent repeating patterns or cycles, such as periodic orbits.
 - Strange attractors represent complex, non-repeating attractors found in chaotic systems. Turbulence is a prime example of such behavior.
- Lorenz first noticed chaotic systems in the behavior of these three equations.

$$dx/dt = -ax + ay$$

$$dy/dt = -xz + bx - ay$$

$$dz/dt = -xy - cz$$

Attractors

- Mathematical constructs that provide insight into the long-term evolution of dynamic systems.
- Three kinds
 - 1. Fixed-point attractors represent rest.
 - 2. Periodic attractors represent repeating patterns or cycles, such as periodic orbits.
 - Strange attractors represent complex, non-repeating attractors found in chaotic systems. Turbulence is a prime example of such behavior.
- Lorenz first noticed chaotic systems in the behavior of these three equations.

$$dx/dt = -ax + ay$$

$$dy/dt = -xz + bx - y$$

$$dz/dt = -xy - cz$$

Attractors

- Mathematical constructs that provide insight into the long-term evolution of dynamic systems.
- Three kinds
 - 1. Fixed-point attractors represent rest.
 - 2. Periodic attractors represent repeating patterns or cycles, such as periodic orbits.
 - Strange attractors represent complex, non-repeating attractors found in chaotic systems. Turbulence is a prime example of such behavior.
- Lorenz first noticed chaotic systems in the behavior of these three equations.

$$dx/dt = -ax + ay$$

$$dy/dt = -xz + bx - y$$

$$dz/dt = -xy - cz$$

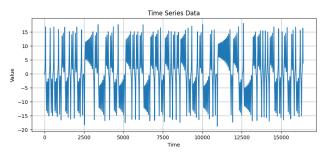
Attractors Cont.

$$dx/dt = -ax + ay$$

$$dy/dt = -xz + bx - y$$

$$dz/dt = -xy - cz$$

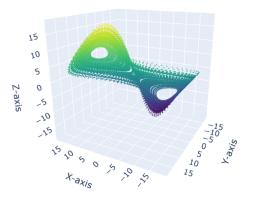
The time series produced by these equations looks like this



We have been looking at the Lorenz attractor's time series. What does it look like?

The Lorenz Attractor

Choosing $\tau = 10$, we get



Let's try other τ values to see their effect on reconstruction. Click here!

What Is Next

Introduction

History Important Work

Foundations of NTSA

Terminology
State Space Reconstruction
Delay Coordinate Embedding

Mathematical Characterization

Lyapunov Exponents

Conclusion

Here is what we covered today:

- Introduction
 - How NTSA came to be
 - Some important work in the field

2. Foundations

- Basic terminology
- State space reconstruction
- Delay coordinate embedding

3. Characterization

- Lyapunov exponents
- Attractors

Here is what we covered today:

- 1. Introduction
 - How NTSA came to be
 - Some important work in the field
- Foundations
 - Basic terminology
 - State space reconstruction
 - Delay coordinate embedding
- Characterization
 - Lyapunov exponents
 - Attractors

Here is what we covered today:

- 1. Introduction
 - How NTSA came to be
 - Some important work in the field

2. Foundations

- Basic terminology
- State space reconstruction
- Delay coordinate embedding

3. Characterization

- Lyapunov exponents
- Attractors

Here is what we covered today:

- 1. Introduction
 - How NTSA came to be
 - Some important work in the field

2. Foundations

- Basic terminology
- State space reconstruction
- Delay coordinate embedding

3. Characterization

- Lyapunov exponents
- Attractors

Here is what we covered today:

- 1. Introduction
 - How NTSA came to be
 - Some important work in the field

2. Foundations

- Basic terminology
- State space reconstruction
- Delay coordinate embedding

3. Characterization

- Lyapunov exponents
- Attractors

References

Harold Edwin Hurst. "Long-term storage capacity of reservoirs". In: Transactions of the American society of civil engineers 116.1 (1951), pp. 770-799.

Edward N Lorenz. "Deterministic nonperiodic flow". In: Journal of atmospheric sciences 20.2 (1963), pp. 130–141.

Edward N Lorenz. "Atmospheric predictability as revealed by naturally occurring analogues". In: Journal of Atmospheric Sciences 26.4 (1969), pp. 636–646.

Benoit B Mandelbrot and Michael Aizenman. Fractals: form, chance, and dimension. 1979.

Norman H Packard et al. "Geometry from a time series". In: Physical review letters 45.9 (1980), p. 712.

Alan Wolf et al. "Determining Lyapunov exponents from a time series". In: Physica D: nonlinear phenomena 16.3 (1985), pp. 285–317.

Michael F Barnsley et al. Fractals in nature: from characterization to simulation. Springer, 1988.

AA Tsonis and JB Elsner. "Chaos, strange attractors, and weather". In: Bulletin of the American Meteorological Society 70.1 (1989), pp. 14–23.

Robert Vantard and Michael Ghil. "Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series". In: *Physica D: Nonlinear Phenomena* 35.3 (1989), pp. 395–424.

Martin Casdagli et al. "State space reconstruction in the presence of noise". In: Physica D: Nonlinear Phenomena 51.1-3 (1991), pp. 52–98.

KR1090334 Sreenivasan. "Fractals and multifractals in fluid turbulence". In: Annual review of fluid mechanics 23.1 (1991), pp. 539–604.

Matthew B Kennel, Reggie Brown, and Henry DI Abarbanel. "Determining embedding dimension for phase-space reconstruction using a geometrical construction". In: *Physical review A* 45.6 (1992), p. 3403.

References

Michael T Rosenstein, James J Collins, and Carlo J De Luca. "A practical method for calculating largest Lyapunov exponents from small data sets". In: Physica D: Nonlinear Phenomena 65.1-2 (1993), pp. 117–134.

C-K Peng et al. "Mosaic organization of DNA nucleotides". In: Physical review e 49.2 (1994), p. 1685.

Timo Teräsvirta. "Specification, estimation, and evaluation of smooth transition autoregressive models". In: Journal of the american Statistical association 89.425 (1994), pp. 208–218.

Jean-Pierre Eckmann, S Oliffson Kamphorst, David Ruelle, et al. "Recurrence plots of dynamical systems". In: World Scientific Series on Nonlinear Science Series A 16 (1995), pp. 441–446.

June Barrow-Green. Poincaré and the three body problem. 11. American Mathematical Soc., 1997.

Carl Rhodes and Manfred Morari. "The false nearest neighbors algorithm: An overview". In: Computers & Chemical Engineering 21 (1997), S1149–S1154.

Vincent Moron, R Vautard, and M Ghil. "Trends, interdecadal and interannual oscillations in global sea-surface temperatures". In: Climate Dynamics 14 (1998), pp. 545–569.

M Cencini et al. "Chaos or noise: Difficulties of a distinction". In: Physical Review E 62.1 (2000), p. 427.

Mercedes Pascual et al. "Cholera dynamics and El Nino-southern oscillation". In: Science 289.5485 (2000), pp. 1766–1769.

William T Ball et al. "Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery". In: Atmospheric Chemistry and Physics 18.2 (2018), pp. 1379–1394.

Glenn R McGregor and Kristie Ebi. "El Niño Southern Oscillation (ENSO) and health: An overview for climate and health researchers". In: Atmosphere 9.7 (2018), p. 282.

Yong Zou et al. "Complex network approaches to nonlinear time series analysis". In: Physics Reports 787 (2019), pp. 1–97.

Benjamin Lindemann et al. "A survey on long short-term memory networks for time series prediction". In: Procedia CIRP 99 (2021), pp. 650–655.

References

Thomas Schreiber and Andreas Schmitz. "Surrogate time series". In: Physica D: Nonlinear Phenomena 142.3-4 (2000), pp. 346–382.

Anthony D Hall, Joakim Skalin, and Timo Teräsvirta. "A nonlinear time series model of El Nino". In: Environmental Modelling & Software 16.2 (2001), pp. 139–146.

Michael Ghil et al. "Advanced spectral methods for climatic time series". In: Reviews of geophysics 40.1 (2002), pp. 3–1.

Alicia M Ellis and Eric Post. "Population response to climate change: linear vs. non-linear modeling approaches". In: BMC ecology 4.1 (2004), pp. 1–9.

Richard E. Chandler. "On the use of generalized linear models for interpreting climate variability". In: Environmetrics 16 (7 Nov. 2005), pp. 699–715. ISSN: 11804009. DOI: 10.1002/env.731.

Jonathan B Dingwell. "Lyapunov exponents". In: Wiley encyclopedia of biomedical engineering (2006).

Guus JM Velders et al. "The importance of the Montreal Protocol in protecting climate". In: Proceedings of the National Academy of Sciences 104.12 (2007), pp. 4814–4819.

Nicholas Kantas et al. "An overview of sequential Monte Carlo methods for parameter estimation in general state-space models". In: IFAC Proceedings Volumes 42.10 (2009), pp. 774–785.

Reik V Donner et al. "Recurrence networks—A novel paradigm for nonlinear time series analysis". In: New Journal of Physics 12.3 (2010), p. 033025.

Ladislav Krištoufek et al. "Rescaled range analysis and detrended fluctuation analysis: Finite sample properties and confidence intervals". In: Czech Economic Review 4.03 (2010), pp. 315–329.

JH Lucio, R Valdés, and LR Rodriguez. "Improvements to surrogate data methods for nonstationary time series". In: Physical Review E 85.5 (2012), p. 056202.

Bulbul Jan et al. "Study of probabilistic modeling of stratospheric ozone fluctuations over Pakistan and China regions". In: *Journal of Atmospheric and Solar-Terrestrial Physics* 109 (2014), pp. 43–47.

Thank you for listening!

Krishna Chebolu

ksc5435@truman.edu